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Abstract 

We define a conserved Lorentz vector for a two-componen t  spinor field that  obeys the  
Kle in-Gordon equat ion  and interpret it as a charge-current density.  The corresponding 
total  charge can take negative as well as positive values, which  is not  t he  case for the  usual 
charge o f  the  Dirac field. We consequent ly  can define probabil i ty ampl i tudes  for a 
relativistic q u a n t u m  mechanics,  and we solve the  inhomogeneous  equat ion by means  o f  
the  causal Green funct ion.  This vector is not  invariant under  gauge t ransformat ions  o f  
the  spinor field, and we cannot  generalize the  equat ion by  the  gauge invariant substi tu-  
t ion to obta in  the  interact ion wi th  an electromagnetic field. In  the  limit o f  a massless 
field tha t  obeys  the  Weyl equat ion,  t h e  charge vanishes. 

i, Introduction 

The Klein-Gordon equation 

(0 2 + m2)O(x) = 0 (1.1) 

for the complex scalar field ~ and the Dirac equation 

( - i  7 • ~ + m)~(x )  = 0 (t .2) 

for the bispinor field ~ were proposed as relativistic generalizations of the 
Schr6dinger equation in quantum mechanics. The conserved four-vector 

](KG) = i(~*~,~ * - ¢,uqS) (1.3) 

was found unsuited for a probabilistic interpretation because ]o is not positive. 
On the other hand, 

](u D) = ~7,  ~ (1.4) 

has a positive Jo, which was considered an advantage of the Dirac equation over 
the Klein-Gordon equation, These vectors were later interpreted in terms of 
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charge and current densities, and relativistic quantum mechanics was abandoned 
in favor of quantum theory of fields. 

We pointed out (Marx, t969) how a probabilistic interpretation could be 
extended to the relativistic theory of a charged scalar particle interacting with 
an external electromagnetic field. Use of the causal Green-function or Feym-nan 
propagator leads to the specification of initial and final conditions. The inter- 
pretation of the wave function in terms o f probability amplitudes was a direct 
consequence of charge conservation, and it allowed for a proper account of 
pair creation and annihilation. We extended the theory to several particles 
through Dirac's many-times formalism (Marx, 1970a). 

Thus, the positive 1"0 of the Dirac equation becomes a drawback. We have 
modified this equation along the lines of quantum field theory (Marx, 1970b, 
1972), by introducing an observer-dependent Lagrangian density (Marx, 1970c), 
or a third-order equation (Marx, 1974). However, these approaches do not lead 
to a truly satisfactory formulation of relativistic quantum mechanics of spin-½ 
particles. 

ttere we show that the Dirac field possesses a conserved Lorentz vector with 
an indefinite charge density. We use the two-component spinor form of the 
Dirac equation (Feynman and Gell-Mann, 1958), which for the free field re- 
duces to the Klein-Gordon equation. A Lagrangian density constructed in a 
similar manner vanishes identically, and other tensor densities have the same 
problem. 

In Section 2 we find the momentum-space expansion of the solutions and 
compute the conserved charge. We define probability amplitudes for particles 
and antiparticles, and consider the invariance of the equation under space 
reflection, time reflection, and charge conjugation. In Section 2 we use the 
causal Green-function to find the solution of the inhomogeneous equation 
in terms of integrals over the sources and appropriate "boundary" conditions. 
We briefly discuss the massless field in Section 4. 

The charge and current density vector is not invariant under gauge trans- 
formations of the first kind, which precludes the introduction of electro- 
magnetic interactions through the usual gauge-invariant substitution. These 
difficulties are discussed in Section 5. 

The notation in this paper follows that used in previous ones (Marx, 1970c, 
1974). We use a time-favoring metric, natural units, and the modified summa- 
tion convention for repeated lower Greek indices. 

2. The Free FieM 

We make the customary assumption that the free spinor field obeys the 
Klein-Gordon equation 

(~2 + rn~)xa(x) = 0 (2 .1)  

Under a proper orthochronous Lorentz transformation, the two-component 
spinor field transforms according to the equation 

Y~ = sA By,~ (2.2) 
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where s is a unimodular 2 x 2 matrix, that is, its determinant is 1. The com- 
plex conjugate field thus transforms with s*, and we indicate this by using 
dotted indices, that is, 

[X~ (x)] * = X.~ (x) (2.3) 

Consequently, a quanti ty such as X~XA is not a Lorentz scalar. The field that 
transforms with }'-1 is 

k A = eaBXB (2.4) 

where 

Thus, X A ~A is a Lorentz scalar, but X a XA and X A ' u XA,u vanish identically. 
The above considerations explain why the Klein-Gordon equation cannot be 
derived from a Lagrangian density in the usual manner.  This equation is 
equivalent to the Dirac equation, 1 which can be obtained from a Lagrangian 
density, but this involves a variation of  four independent fields, and a sub- 
stitution leads to a third-order equation. The conserved current density 
expressed in terms of  the two-component  spinors is 

4 * • = + XA,c~Oo~ OuCBO~ XD,~/m (2.6) 

where (oo AB) is a unit matrix and the (o/AB) are the Pauti matrices. The charge 
densityjofD) is positive definite, and cannot be used in our version of  relativ- 
istic quantum mechanics (Marx, 1970a). There is another conserved real vec- 
tor (we multiply by - e ,  the charge of  the electron) 

iu = - i e ( x  A XA,u - ×,A X~,u ) (2,7) 

which satisfies the conservation law 

Ju,u = 0  (2.8) 

as a consequence of equations (2.1) and (2.4), and J0 is not negative definite. 
We decompose the solutions of  equation (2.1) in momentum space in terms 

of helicity amplitudes, and find 

XA(X) = (27r) -3/2 f d3p(2Po) -1/2 ~. [bK(p)xA K(~O) exp(-- ip  "x)  
X 

+ d~,~)X~X(p) exp (ip" x)] (2.9) 

where/0 is a unit vector in the direction of  p defined by its polar coordinates 
0 and 4~ 

Po = (p2 + m2)1/2 (2.10) 

I See Marx (1974) and the references found therein. 
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and 

( c o s ( 0 / 2 )  t ,  (-sin(O/2)exp(-i~)) (2.11) 

X~ = sin (0/2) exp(iq~)] XA = cos (0/2) / 

We compute the total charge 

O = -ie f dax(UfXA - X*A )~)  (2.12) 

where the dot on the X indicates a derivative with respect to time, and obtain 

O = -e f d3p [b+(p) d*(p) - b-(p)  d*(p) + b*(p) d+(p) - b -*(.p) d-(p)] 

(2.i3) 

where we have used 
B + ~ + * e'A XB(P)XA(P) = eaBXB(P)XA(J3) = 0 (2.14) 

B + * - e a XB(P)XA(P)=--eABx~(P)X~4(p)=--I (2.15) 

eaBX~(p)X~4(--tJ ) = exp(iq~), e'-4BX~(P)XA(--p) = exp(--i~) (2.16) 

eaBX~(p)X~(-t~) = eABx~(p)X ~ ( - p )  = 0 (2.t7) 

We define the new amplitudes 

ax(p) = [bx(p) + X dx(p)]/x/2 (2.18) 

ca(p) = [-£b~,(p) -dx(p)] /x/2 (2.19) 

and the charge becomes 

Q =-efd3P 2 [lax(p)t 2 - t c a ( P ) I  2] (2.20) 
; t  

This expression suggests that we interpret a+ and a -  as probability amplitudes 
for particles (electrons), and c+ and c-  as those for antiparticles (positrons). 
Equation (2.9) implies that 

ax(p, t) = ax(.p) exp(-ipot) (2.21) 

cx(p, t) = ca(p) exp(-iPot ) (2.22) 

which shows that the probability densities in momentum space, lax(P, t)12 
and [ ca( p, t) 12, are constant. We can define the corresponding probability 
amplitudes in position space, guided by previous experience and equations 
(3.11) and (3.12) below, by 

g~e)(x)=(2~)-3/2 f dap[ ~ ax(p't)Xaa(p) ] (2.23) 

g(P)(x)=(2n)-3/2 f d3~ : c~(p't)Xah@)] exp( -ip " (2.24) 
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and the probability densities, summed over spin states, are 

p(e'P)(x) = g(e'P)"f(x)g(e'P)(x) (2 .25)  

We can consequently express the total charge in the form 

Q = - e  f d3x [p(e)(x) - p(P)(x)] (2.26) 

the difference between the electron and positron terms. 
The Klein-Gordon equation (2.1) is covariant under proper orthochronous 

korentz transformations, that is, under a simultaneous change in the coordi- 
nates by 

t V 
x u = a u xv (2.27) 

where au v satisfies 

auXavPgxo = guy (2.28) 

det (% v) = 1, ao o >.0 (2.29) 

and the field according to equation (2.2), where SA B is related to a f t  by 

B *D v . (2.30) S A S~ a~ GvD B = Ol~A 

Equation (2.1) is also invariant under spatial reflection of coordinates, time 
reflection, and complex conjugation. This means that if XA (x, t) is a solution 
of this equation, so are 

X~I (x, t) = XA ( - x ,  t) (2.3t) 

XA (x, t) = XA (X, --t) (2.32) 

and 

~ '  (x, t) = [U t (x, t)] * (2.33) 

From the momentum-space expansion (2.9), we find that 

' f d3p(2Po) -1/2 XA(x) = (27r) -3/2 Z [bx(-P)XAX(--D) exp( - ip  "x) 

+ d~(-p)x~;~(--/~) exp (ip" x)] (2.34) 

and,  s ince 

we have 

xA x(_~)  __ _ X e×p (iX~)×~x(p) 

! 

ax(p) = X exp(-i~b)a-x(-p) 

c~ (p) = - x exp ( -  i~) c -~  ( -  p) 

(2.35) 

(2.36) 

(2.37) 
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According to our interpretation of probability amplitudes, particle amplitudes 
become those of opposite momentum and helicity, and antiparticle amplitudes 
do likewise (aside from a simple phase factor). Under time reflection, we find 

X~t(x) = (2rr) -3/2 f dap(2po) -1/2 ~ [bx(--P)XAX(-/5) exp(ip'  x) 

+ d~( -p )  ;Ltx(-/~) exp(- ip  - x)] (2.38) 

a~(p) = X exp(-iXq~)c~(-p) (2.39) 

c~ (p) = - X exp (-iX~b)a~ ( -  p) (2.40) 

Thus, particle amplitudes become antiparticle amplitude of opposite momen- 
tum and the same helicity, and vice versa (aside from phase factors and complex 
conjugation). Similarly, 

X~'(x) = (27r) -3/2 f d3p(2Po) -1/2 ~ [b~(p)xX*A@) exp (ip. x) 
+ dx(p)x -x*A (fi) e x p ( - i ? - x ) ]  (2.41) 

and we use 

(sin(O/2)exp(-iO)]×_,A(p)= { c°s(0/2) t 

X+*A @) = \ -cos(0/2)  ] '  ~sin(0/2)exp (i~)] 

(2.42) 

for the spin. 

s = f [g(e)?ag(e) + g(P)4ietg (p) ] 

3. The Inhomogeneous Equation 
We now consider the solution of the Klein-Gordon equation with a given 

source and the specification of "boundary" conditions at the initial and 
final times. 

(2.46) 

to derive 
a'~'(p) = Xca(p) (2.43) 

c'~'(p) = -Xax(p) (2.44) 

Under this transformation, particle and antiparticle amplitudes are exchanged 
without change in momentum or helicity, that is, we interpret it as charge 
conjugation. A combination of time reflection and charge conjugation results 
in Wigner time reversal. 

Although we do not have tensors that can be interpreted as stress-energy 
and angular momentum densities, we can define the conserved quantities in 
terms of the probability amplitudes, such as 

Pu = fd3ppu ~ ([axle + [cxl2) (2°45) 
x 

for the energy-momentum vector, and 
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The probability amplitudes are a peculiar mixture of  positive- and negative- 
frequency parts of  the free field. However, we can still use the causal Green 
function Ay(x  ) to solve the inhomogeneous equation when particle ampli- 
tudes are specified at the initial time and antiparticle amplitudes at the final 
time, as we do in relativistic quantum mechanics. 

The equation we have to solve is 

(0 2 + m2)×A(x) = coA (x) (3.1) 

and the Green function satisfies 

(0 2 + m2)AF(X) = --6(x) (3.2) 

We can express A F in terms of the step function O(t) and the solutions 
A(+-)(x) of  the homogeneous Klein-Gordon equation by 

AF(X) = O(t)A ( +)(x) -- O(- t )~  (-)(x) (3.3) 

We substitute 

~ (X t) = ~ AB ~xF(X ' -- X) 

in Green's theorem 

(3.4) 

2 t f d4x ' [C(x ')0 '2 + m )XB(X ) - XB(x')(O 'z + mZ)~B(x')] 

= fdZx'[~B(x')2B(X,) _ ' "B ' t'-~t xB(x )4 (x)] ~'=d  (3.5) 

and use 

3o2X(+-)(x) = -~iffgA(+-)(x) (3.6) 

where E i s  the integral operator 

: ( _  vz  + m 2) 1/2 (3.7) 

We integrate by parts and obtain 

xA(x)=-  f d3x ' f dt 'zX~(x '-  x ) ,~ AC )  

_ ~ _ + 1 .  J - 1  ' t + i[A(+)(x x ,, t ti)(2E')(½ ~zff 0o)XA(x, t/) 

r 1 .~t-1 r o ] 
- Z~(-)(x - x ,  t - tf)(2E')(~ - "~t/~ " OO)XA(X, tf)] (3.8) 

) 

The combinations of  the field and the time derivative of  the field correspond 
to the positive- and negative-frequency parts for a field that is free at the 
initial and final times, and we define 

X(-+)(x) = ½(1 -+ iE -1  a0)X~4 (X) (3.9) 
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But this separation does not correspond to particles and antiparticles in the 
present approach, and we have to modify equation (3.8). Applying Green's 
theorem to g *A and A F and adding the terms to those in equation (3.8), we 
obtain i tf 

+ ×*~ (x) -- - f d3x ' { f dt'~F(x' - x)[~A (x') + ~*~ (x')l XA (x) 
t t i  

+ ia(+)(x - x', t - ti)(2/?')[×(A+)(x ', ti) + ×,(+)A (x', tj)] \ 

iA(-)(x - x' ,  t - tf)(2E')[~(-)(x ', tf) + X *(-)A (x', tf)l} 
t (3.t0) 

The left-hand side takes the values Xl + (X2)* and X2 - (Xl)*, which determine 
Xl and X2- Furthermore, we use equations (2.42) to reduce the solutions of 
the homogeneous equation to 

x e x p ( - i p  ' x )  (3.11) 

2t 

x exp(ip • x) (3.12) 

which are precisely the amplitudes that should be specified at t i and tf, 
respectively. 

If the source a~ A is an interaction term, we can use equation (3.10) to com- 
pute the terms in a perturbation expansion of the solution. 

4. The Massless Field 

If we set the mass equal to zero in the Klein-Gordon equation (2.1), we 
obtain d'Alembert 's equation 

02XA (x) = 0 (4. t )  

Another equation that is frequently used for a massless spinor field is the first- 
order Weyl equation 

oBA XA (x) = 0 (4.2) 

o r  

2 + ,~ "Vx=  0 (4.3) 

The solutions of equation (4.1) can still be written in the form (2.9); those 
that also obey equation (4.2) are further restricted by 

f d3p(2Po) 1/2 [b-(,p)X.4@) e x p ( - / p  ' x )  -d*(p)x,~h0)  exp(ip ' x ) ]  = 0 (4.4) 
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since we can set 

p o  = I p l (4 .5)  

*./3Xx(/3) = XXx~) (4.6) 

Consequently, 

and, from equation (2.13), 

b-(p) = d+(p) = 0 (4.7) 

Q = 0 (4.8) 

We can also come to this conclusion by substituting ?(1 and ?(2 in the charge 
density/o from equation (4.3); the resulting expression is a combination of 
spatial derivatives that do not contribute to an integral over all space. 

States with well-defined helicity are superpositions of particle and anti- 
particle amplitudes. 

5. Electromagnetic Interactions 

We have not found a good way to introduce electromagnetic interactions 
between the classical spinor and electromagnetic fields. We do not have a 
Lagrangian density to start from, and the "gauge-invariant" substitution 

~ -> D~ = ~v - ieAu (5.1) 

is useful ollly when the charged field transforms according to 

X~(x) = exp [leA(x)] ×A (x) (5.2) 

under gauge transformations of the second kind. But the current density (2.7) 
is not invariant under gauge transformations of the first kind (with a constant 
A), and the relation (5.2) is not acceptable. Consequently, the two-component 
spinor form of the Dirac equation, 

[(D 2 + m2)SB A + ieFuv5 ¢ gvB A ] HA(X) = 0 (5.3) 

where 

~a#vB A lg 0 " oCA = ~ u c ~  v - o v e ~ o c .  A )  (5.4) 

is no longer gauge invariant. Also, the current density (2.7) is no longer con- 
served. This is not surprising considering that it differs from the usual con- 
served current density for the Dirac equation, which has a positive definite 
probability density. 

Many interaction terms can be added to the Klein-Gordon equation, gauge 
invariant or not, involving either X~ or XA, and a similar number that can be 
added to the current density (2.7). We have not found a good way to choose 
a particular combination. 

Another approach that might be explored further is that of transformations 
in spinor space that are functions of space and time, along the lines that led 



910 EGON MARX 

to the Yang-Mills field in the case of isospinor space. The connection between 
the. basis in spinor space and the reference frame is based on our choice of 
@B, and a unimodutar transformation, determined up to a sign, is induced 
in spinor space by a proper orthochronous Lorentz transformation. Other 
relationships between the two spaces might also be useful. 

An alternative to an interaction between the fields is an independent 
formulation of relativistic quantum mechanics based on the free-field theory 
and the classical interaction between charged particles. 

6. Concluding R emarks 

We have used an unfamiliar conserved Lorentz vector for the free two-com- 
ponent classical spinor field to define a charge that can take negative as well 
as positive values, and have defined probability amplitudes in agreement 
with the relativistic quantum mechanics of scalar particles. 

When the mass becomes zero, we can restrict the solutions to those of the 
Weyl equation. In this case, the charge that we have defined vanishes, pro- 
~4ding a possible reason for the absence of charged massless spin-½ particles 
in nature. 

It is difficult to find interactions that allow for a conserved current 
density that reduces to the one we have defined here when the coupling 
constant vanishes. We intend to investigate this question in the future, and 
to apply new ideas from classical electrodynamics to relativistic quantum 
mechanics. 
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